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Abstract 

The tradit ional Hartree method  of  solving the  Ha~ree -Fock  equations~ by repeated 
diagonalization and recalculation o f  the  single-particle Hamil tonian,  is expressed in terms 
of  repeated uni tary t ransformat ions  and shown to be applicable to the  general SCF (self- 
consistent  field) equations.  The necessary and  sufficient condi t ions for convergence to a 
unique local SCF solut ion are derived and it is shown that  only a small class of  solutions 
are obtainable by  this method .  

1. Introduction 

The HF (Hartree-Fock) SCF (self-consistent field) theory (Hartree, 1927- 
28; Fock, 1930) is perhaps the most fundamental of many-body theories in 
the sense that it is central to almost all other microscopic theories. But, in 
spite of its importance, we are not aware that the criteria for convergence 
of the standard Hartree iterative method for solving the HF equations have 
ever been established. Tile objective of this paper is to rectify this deficiency 
by determining convergence criteria for the general SCF equations, of which 
the HF equations are a particular case. 

The general SCF theory (Rowe, 1968; Rowe and Wong, t970; Rowe, 1972; 
Clement, 1969; Baranger, 1969; Agodi et al., 1971) can be stated compactly 
as follows: Let [qJ )be a general many-particle state given uniquely in terms of a 
set of single-fermion states l~u) with annihilation and creation operators av, 
a~, respectively. These single-particle states, and hence the many-particle state 
[q J), are defined by the self-consistent field equation 

(q~l{au ,[H,a~]} l~)=6u~e ~ for alt #, u (1.1) 
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That equation (1.1) is indeed a self-consistent field equation is readily seen 
by expanding the Hamiltonian in the usual second quantized form 

1 
H = ~ T~,va~av + 

laVl, t 'v '  

[See for example Appendix C of Rowe (1970) for clarification of notation.] 
Equation (1.1) then becomes 

hu~ = T.~ + u ~ ( q ' )  = 6u~ev (1.3) 

where 

u~v(gO = ~ V~u',v' <~la~'av'[g~> (1.4) 
#rl21 

Thus u(,~) is a self-consistent field that depends on the single-particle states 
through the functional dependence of I ,Is) on those states. 

In the event that "tl is a slater determinant of the single-particle states ~v, 
the above equations are those of the familiar HF approximation. 

The simplest way to solve them is by the Hartree method, traditionally 
used to solve the ttF equations, i.e., by repeated diagonalization and recalculation 
of the single-particle Hamiltonian (1.3), until successive iterations effect no 
change. 

In Section 2, the Hartree method is expressed in a form convenient for a 
discussion of convergence, in terms of repeated unitary transformations. In 
Section 3, we derive convergence criteria and show that only a small class 
of solutions are attainable by this method. The HF approximation is examined 
in more detail in Section 4 and the convergence criteria are expressed in terms 
that explain a characteristic of the Hartree procedure that is well-known from 
practical experience, namely, that successive iterations invariably decrease 
the energy of the many-particle state. This characteristic of the Hartree method 
has long been a nuisance in the calculation of fission barriers in the constrained 
HF approximation. Thus it has only been by devious modifications (Giraud 
et al., 1970; Bassichis and Wilets, 1971) to the Hartree procedure that HF 
solutions could be obtained for which the energy is not a local minimum with 
respect to all possible variations. Section 5 contains some discussion and 
conclusions. 

2. The Hartree Method 

Let {a~} be a set of single-particle basis operators and 

G o = ,#o({c~v?}) (2.1) 

the corresponding many-particle wave function, defined uniquely by the 
basis. If X is an anti-Hermitian one-body operator, acting on the combined 
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Hilbert space of  single- and many-particle states, we can define a new basis 
and a new many-particle state by  the unitary transformation 

c~ (X) = eX(~e-X 
(2.2) 

f ,IffX)> = eXl %> 

Thus the operator X serves to specify the basis {R~(X)}. Our objective is there- 
fore to find the particular X for which equation (1.1) is satisfied with 

a~ = a~(X) (2.3) 

l q'> = l ~ ( x ) >  

Let us suppose we start an iterative solution of the SCF equations with a 
many-particle state I qs(T)>. Corresponding to this state we can define a single- 
particle Hamiltonian 

h(T) = Z (~I'(T) 1 {~z(S), [H, u~(S)] } i ~ (T) )  a~(S)uv(S) (2.4) 
# v  

which operates on both  the single- and many-particle state space. Note that 
h(T) is here expressed in terms of  some single-particle basis S, which need not 
be equal to T. It is therefore important to recognize that, whereas the matrix 
elements 

h.dS,  73 = (,I,(T) 1 {~,(S), [H, ~ ( S ) ]  }I~(73> (2.5) 

depend on both  S and T, the Hamiltonian h(73 depends only on T. 
The Hartree procedure can now be expressed as follows: Given a many- 

particle state ] q/(T)), a single-particle basis S is determined that diagonalizes 
h(T), i.e., 

h,v(S, T) = 6uuez,(T ) (2.6) 

qz(T) is then replaced by ~(S)  and the process iterated until S = T = X, 
whence we have 

(qffX) l (~u(X), [H,a~(X)] }l @(X)> = 8,,ev(X) (2.7) 

and a solution to equation (1.1). 
Our objective is now to determine what class of  SCF solutions can be obtained 

by this procedure, To answer this question we consider a starting state arbitrarily 
close to a SCF solution and examine the criteria for convergence to that par- 
ticular solution. 

3. Criteria for Convergence to a Unique Local Solution 

3.1. A Special Case. First we eliminate a special case for which it follows 
immediately that the Hartree procedure cannot converge to a unique local 
SCF solution. 
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Consider a particular solution g,, for which there exists a subspace D of 
single-particle states spanned by a set of  degenerate eigenstates of h(~),  i.e., 

hvv(*)  = e~vv, V, v ~ D 

Since the matrix elements hvv are left invariant by an arbitrary unitary 
transformation e s of the single-particle states in D, it follows that the Har- 
tree method cannot define the single-particle basis states in D. 

Therefore, if the many-particle state e x i t )  differs from I q ~) by more than 
a phase factor, it follows that [q~) cannot be defined uniquely by the Hartree 
procedure. 

Observe now, by inspection of equations (1.3) and (1.4) that h( 'I0 depends 
on the state i'Iz) through its single-particle densities. 

A necessary, but not sufficient, condition for a unique local solution is there- 
fore that the density matrix elements n~v are also left invariant by the trans- 
formation e s .  Clearly the single-particle densities will be left invariant by a 
general unitary transformation in D if and only if 

n .v  =ng~v for all #t, v E D  

Conversely then we see that the Hartree procedure cannot converge to a unique 
local SCF solution unless the occupation numbers nvv are equal for  all degener- 
ate single-particle states v. 

However, if only the single-particle densities but not other properties of the 
state }q J) are left invariant by an undefined transformation eSi ' I  "), the Hartree 
procedure can only converge to a unique local subset of SCF solutions, all of 
which have identical single-particle properties. The latter situation is undoubt- 
edly extremely rare. It will nevertheless be included in the following analysis 
if we expand the definition of a "unique local solution" to mean the determi- 
nation of any member of a unique local subset of many-particle states all of 
which are SCF solutions and have identical single-particle properties. 

3.2. The Remaining Cases. With the exclusion of the above special case, it will 
be assumed for the following, although it is probably not essential, that the 
single-particle basis that diagonalizes the SCF Hamiltonian simultaneously 
diagonalizes the density matrix, i.e., 

(av ia~av l g ~) = ~ ,~nv  (3.1) 

This is trivially true in the HF approximation and for all shell model generaliza- 
tions of the SCF method that we invisage. Elimination of the special case then 
allows us to assume for the remainder that 

n• = nv if e~ = ev (3.2) 
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To investigate the convergence of the Hartree procedure we suppose that 
I'II) is a self-consistent solutuion to equation (I .1) and consider a starting state 

1~o ) = e -R [gt) (3.3) 

close to Iq0 with 

= e-Ra e R 

At the first iteration, S is given by requiring 

hsv(S, 0) = (q% [{as(S), [H, a~(S)] }l~o ) (3.4) 

to be diagonal, where 

oL~ (S) = eS a~ e-S = eS e-R a~ e R e-S (3.5) 

Equation (3.4) can therefore be expressed as follows: 

hsv(S. O) = ( qg l eR eS e -R {a s,  [eR e-S HeS e -R , a~ ] }eR e-S e -R [qO (3.6) 

Expanding to first order in R and S, we obtain 

hsv(S , O)=6,ve  v + (tI' I {as, [ [H,S - R] ,a~] } i ~ ) -  ('I~ t [ {a s, [H,a~] ),S] IqO 

(3.7) 

It can easily be shown by expansion that 

('I'1 (a s, [ [H, S], a~] }I~P)- (q , l [{as , [H,a~]} ,S]  I'P) 

= ( e  s - ( 3 . 8 )  

Therefore Suv is given by 

(e s - ev)S w, = Y. Hs~,,~'v'R~' v' (3.9) 
S tl) t 

where 

Huv,s, v, = (xp l{as ' [ [H, a~'av'], a~])[ 'If) (3.10) 

= 6ss'6vv'(e s - ev) + Vsv'vu'(nv' - n~,) (3.11) 

Before proceeding it is important to note some important characteristics 
of the operators R and S and their relationship. The operator R effects a 
transformation only of the many-particle state, equation (3.3), whereas S 
effects a transformation of single-particle states, equation (3.5). Now since the 
matrix element hu~(S, 0) of the single-particle Hamiltonian that determines S 
is the expectation of a one-body operator {as(S), [H, a~(S)] } [cf. equation 
(3.4)], it is clear that S is left invariant by any transformation of [q%) that 
leaves its single-particle density invariant. To first order in R 

(q% [ a~a 8 pI%) = (,It [a~a~ 1~) - R~,~(nc~ - n~) (3.12) 

Thus S cannot depend on any elements R ~  for which no = n~. In solving 
equation (3.9) for S we may therefore set all such elements of R equal to zero. 
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The corresponding elements of S cannot be set directly equal to zero, since 
they are needed in transforming buy(S ,  0) to diagonal form. However, at 
each Hartree iteration we can diagonalize hay(S,  T )  in two successive stages: 

e s = e s l  eS~ (3.13) 

where S 2 only ensures the partial diagonalization 

h v v ( S  2, T) = 0 for nv --# n u (3.14) 

and S 1 completes the diagonalization between states of equal occupancy. Now 
a unitary transformation among states of equal occupancy leaves the single- 
particle density invariant to all orders. The transformation exp (S 1) can there- 
fore be neglected at each iteration except the last since it cannot influence 
the calculation of  S at any subsequent iteration. In considering the convergence 
of the Hartree procedure it is therefore sufficient to consider only the calcula- 
tion o fS  2 . This is a generalization of the well-known characteristic of the 
Hartree-Fock approximation in which diagonalization of the single-particle 
Hamiltonian within the space of occupied, or unoccupied states, can be left 
until convergence is already achieved. 

We therefore proceed to solve equation (3.9) within the subspace of states 
for which nv ~ n~ and nv '  ~ nv , .  Combining this restriction with equation 
(3.2), we see that the indices in equation (3.9) can be restricted to those for 
which 

% - e~ ~ 0 ,  n ~ -  nv  ~ 0  
(3.15) 

% '  - ev' -¢ O, n . ,  - n~,, 4= 0 

It is now convenient to multiply both sides of equation (3.9) by (nv - nu):  

(n v - n v ) ( e v  - e v ) S v v  = X ~£~v ,v 'v 'Ru 'v  ' (3,16) 
l~tV r 

where • is the Hermitian matrix 

~t~v ,g ' v '  = 8mz'Svv'O~v - n u ) ( e .  - ev) + (nv - n ,~ )Vgv 'v tJ (nv '  - n . , )  

(3.17) 

Now let us order the indices such that 

13> v 

Then S can be expressed 

S-- 

if (nv - n#)(el~ - ev) > 0 (3.18) 

and R likewise. This enables us to write the solutions to equation (3.16) in 
matrix form 

0 A B R 

(Svva~av  * t - S u v a v a ~ )  (3.19) 
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where (ne) is the diagonal positive definite matrix with elements 

(ne)uv = (nv - nu)(e  u - ev), ~ > v (3.21) 

and 

Auvv. 'v '  = ~ , v u ' v ' ,  Bu~,u'v' = - o ~ , v v ' u ' ,  l~ > v, ~' > v' 

(3.22) 

The submatrices A and B are simple generalizations of the standard RPA 
(random phase approximation) (Rowe, 1970; Thouless, 1961) matrices to 
which they reduce in the HF approximation. 

To see if the Hartree procedure is convergent it is convenient to expand 
R and S in terms of the solutions to the equation 

= cox (3.23) 
B* A Yx n 

This is an eigenvalue equation for a Hermitian matrix with a positive definite 

metric. Its eigenvalues are therefore real. Now if (xgxx) is an eigenvector with 

it follows from symmetry that (xY~) is also an eigenvector of eigenvalue (a3 h , 

cxx] These eigenvalue co x. Thus we can express all solutions in the form t x [  .. 

solutions can be obtained from 

X = ( n e ) - l / 2 z x  (3.24) 

where Zx is a solution of the eigenvector equation 

= c°x (3.25) 

with unit metric arm 

= ( n e ) - l / 2 A ( n e )  -1/2 (3.26) 

/~ = (/,/•) - 1 / 2 g ( / , / e  ) - 1/2 

We assume that the eigenvectors are normalized in the conventional way, 
so that 

Z~Z~, + c.c .  = ~Kx 
(3.27) 

X~(ne)Xx + c.c.  = a ~ x  

We may therefore expand 

with Cx real and given by 

R = ~ CxXx (3.28) 

Ca = X ~ ( n e ) R  + c.c. (3.29) 
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Substituting the above expansion for R into equation (3.20) we obtain the 
solution 

S = ~ COxCxXx (3.30) 
X 

Thus comparing equations (3.28) and (3.30) we see that the Hartree method 
diverges with respect to any mode X if co x < 0 or cox > 2. 

It should be noted that convergence can sometimes be achieved even if one 
of the cox is outside the range for convergence provided the coefficient C~, 
for the offending mode can be maintained precisely equal to zero throughout 
the calculation by the imposition of  some symmetry. 

Now co x > 0, for all X, if and only if the matrix 

is positive definite. Equivalently, since (he) is positive definite, cox > 0, for all 
X, if and only if the matrix 

(AB.)B. A (3.32) 

is positive definite. 
It is interesting to note that, in the HF approximation, this convergence 

condition reduces to Thouless' stability condition for real RPA roots (Thouless, 
1961). 

The condition that cox < 2, for all X, is that the matrix 

2 ( ~  ~ ) - ( ~ ,  A*) (3.33) 

should be positive definite. Again, since (ne) is positive definite, this is equiva- 
lent to the condition that 

2 ( ;  e : e ) - - ( ; *  B , )  (3.34) 

is positive definite. 
The above two convergence conditions can be put into a symmetric form 

by defining the two Hamiltonians 

H+ = h + Vres (3.35) 

where h is the single-particle SCF Hamiltonian and Vres the residual interac- 
tion; i.e., the original Hamiltonian His equal to H We can then define the +" 

matrices 

A± = A(H+) 
(3.36) 

B+ = B(H+) 
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Furthermore we note from equation (3.17) that 

A(h) = ne (3.37) 

Thus the conditions for convergence, with respect to all modes X, are that 
the matrices 

should both be positive definite. 
Comparison o f  equations (3.28) and (3.30) shows that the rate of  conver- 

gence of the Hartree procedure is maximum when co x = 1, for all X. Now 
co x = 1, for all X, only if Vres is zero, in which case the whole Hamiltonian is 
one-body and the problem is trivial, tn typical nuclear situations, for example, 
one or two values of  co x are ~0 .5  and the others ~1.0.  The low values corre- 
spond to low-lying collective excitations in the many-part ide spectrum. Thus 
the effect o f  such collective excitations is to substantially reduce the rate of  
convergence of  the Hartree iterative solution. 

4. The Hartree-Foek Approximation 

It is instructive to pursue the significance of  the above convergence con- 
ditions for the standard HF approximation. In the HF approximation l ~ )  
is a Slater determinant and the matrices A+ and B+ can be written in the 
alternative form 

A;h,p '  h' = ('~[[a~ap,[(h +-" V :), a*p,a~,] ] Iw> 
(4.1) 

where : V: is the two-body interaction arranged in normal order with respect 
to tg ')  as particle-hole vacuum, i.e., 

: V: 4 V ,  vu'v':a?ua~av'au ': 
~platV r 

tt is then easily shown that the convergence conditions become 

(xPI [[H+,S],S] I,I~) > 0 (4.2) 

for all particle-hole operators S (Rowe, t970;  Thouless, 1961). 
Now suppose that I g'o ) is a determinant close to t't* ) and that diagonaliza- 

tion of  huv(S, 0) for this state yields an operator S. We may then expand the 
Hamiltonian in normal order with respect to the state i,I* 0 ) as particle-hole 
vacuum, i.e., 

H = const + h(0) + : V: (4.3) 

We wish to compare the energy expectation of  the state 

l ~(S))  = es [ ~'o ) (4.4) 
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with that of  [q*o)- Since h(0) is diagonal in the S representation 

h(O) = S, %(S)atv(S)av(S) (4.5) 

there are no linear terms in S in the expansion 

(,I,o Ih(0)[ ~o) = (,I,(S)Ih(0)I,P(S)) 

+ ~(xP(S){ [[h(0), S] ,  S] IqffS)) + - - -  (4.6) 

And since : V: is normal ordered with respect to l~I'o) there are no zero or first 
order terms in S in the expansion 

('!~(S)l'V:l'I'(S)>=½('I'ol[[:V:,S],S]leVo)+ ".- (4.7) 

Therefore 

('!'(S)I HI qffS)) = (~I'o 1Hl'I~o ) 

- ½(q'o l [ [ ( h ( 0 ) -  : v : ) , s ] , s ]  1%)  + (4.8) 

which to second order in S can be written 

('-t '(S)IHI~I'(S))=(~olHI't 'o)- ½('PI[[H-,S],S]tW) (4.9) 

Thus, if the convergence condition for H - i s  satisfied, we find that the energy 
expectation must decrease at each Hartree iteration. But the convergence con- 
dition for H+ is that the energy expectation ( ~  IHl'Is) for the HF soIution is a 
minimum with respect to all infinitesimal variations. Thus we can understand 
the necessity for both conditions to be satisfied for the Hartree method to 
converge. 

5. Discussion 

In this paper we have derived necessary and sufficient condit!ons for 
convergence of the Hartree method of solving the general SCF equations. 
By considering the HF approximation in some detail, we were able to interpret 
the physical significance of the conditions. We also learned that the Hartree 
procedure can only converge to a very restricted class of  SCF solutions. In 
particular, in the HF approximation, it can only converge to those solutions 
for which the energy is a local minimum with respect to all possible allowed 
infinitesimal variations. This is the condition 

(q~I[[H+,S],S]I'.t')> 0 for att S (5.1) 

corresponding to Thouless' stability condition for real RPA roots (Thouless, 
1961). 

Now, in nuclear physics, the residual interaction, Vres, is predominantly 
attractive. Given that the condition (5.1) is satisfied, it is unlikely therefore 
that the other condition for convergence, i.e., 

(vPI[[H_,S],S]I,I,)>O for all S (5.2) 
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would not also be satisfied. Thus we expect that, for the ground-state HF 
solution (the minimum minimorum), the Hartree procedure would normally 
converge, although the rate of  convergence might be slow, if low-lying 
RPA collective roots occur. 

For systems in which the residual interaction is strong and repulsive, on 
the other hand, it is possible that even the ground-state solution is unobtain- 
able by the Hartree procedure. However it is possible that such systems are of  
no practical interest. 

In a tbtlowing paper we shall consider the Newton-Kantorovic method 
for solving both the SCF and the generalized variational equations. We 
shall show that it converges in all cases of  practical interest and that, even when 
the Hartree procedure does converge, the former converges much faster. 
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